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Abstract
In a Wigner quantum mechanical model, with a solution in terms of the
Lie superalgebra gl(1|n), one is faced with determining the eigenvalues
and eigenvectors for an arbitrary self-adjoint odd element of gl(1|n) in any
unitary irreducible representation W . We show that the eigenvalue problem
can be solved by the decomposition of W with respect to the branching
gl(1|n) → gl(1|1) ⊕ gl(n − 1). The eigenvector problem is much harder,
since the Gel’fand–Zetlin basis of W is involved, and the explicit actions
of gl(1|n) generators on this basis are fairly complicated. Using properties
of the Gel’fand–Zetlin basis, we manage to present a solution for this
problem as well. Our solution is illustrated for two special classes of unitary
gl(1|n) representations: the so-called Fock representations and the ladder
representations.

PACS numbers: 03.65.−w, 03.65.Fd, 02.20.−a

1. Introduction

Recently, the Wigner quantum approach of a quantum mechanical model consisting of a linear
chain of n identical harmonic oscillators coupled by some nearest neighbour interaction was
considered [1]. In the standard approach, where the canonical commutation relations between
position and momentum operators are required, a solution of the system is well known [2].
In [1], it was shown that these requirements can be relaxed and the problem was treated as a
Wigner quantum system. As a consequence, the system allows besides the canonical solution
also other types of solutions. In particular, it was shown that the (finite-dimensional) unitary
irreducible representations of the Lie superalgebra gl(1|n) give rise to new solutions.

1 Permanent address: Institute for Nuclear Research and Nuclear Energy Boul. Tsarigradsko Chaussee 72, 1784
Sofia, Bulgaria.
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In order to study properties of these new solutions, one is faced with some computationally
difficult problems in the representation theory of gl(1|n) [3, 4]. More precisely, consider
the standard basis of gl(1|n) consisting of elements eij (0 � i, j � n), with e0j and ej0

(1 � j � n) the odd elements of the Lie superalgebra, with bracket (2.8), and with star
condition e

†
ij = eji . The unitary representations W = W([m]n+1) of gl(1|n) are well known

[5]: they are labelled by some (n + 1)-tuple [m]n+1 subject to certain conditions. Even more:
for such representations, a Gel’fand–Zetlin basis has been constructed and the explicit action
of the gl(1|n) generators on the basis vectors of W is also known [6]. Explicit actions of
generators on a Gel’fand–Zetlin basis (GZ basis) are usually quite involved, and this is also
the case for gl(1|n). In particular, the action of the odd generators e0j and ej0 on a GZ-basis
vector is very complicated, see (3.9)–(3.8).

The operators we intend to study are the position and momentum operators q̂r and p̂r

(r = 1, . . . , n) of the quantum system. These are self-adjoint operators, and in the gl(1|n)

solution of the problem considered in [1] as a Wigner quantum system their expression is of
the form

n∑
j=1

αje0j +
n∑

j=1

α∗
j ej0, (1.1)

for certain constants αj . This is an arbitrary self-adjoint odd element in gl(1|n). For such
elements, we want to determine the spectrum (eigenvalues) in any unitary representation W .
Furthermore, we wish to construct an explicit set of orthonormal eigenvectors of (1.1) in
terms of the GZ basis of W . The eigenvalue problem turns out to be feasible, thanks to
group theoretical methods. In fact, we show how it is related to the decomposition of gl(1|n)

representations into representations of the subalgebra gl(1|1) ⊕ gl(n − 1). The eigenvector
problem is much harder, as one is faced with the sophisticated action of the Lie superalgebra
generators on the GZ-basis vectors. But also here, we manage to present a solution.

The structure of the paper is as follows. In section 2, we describe in more detail the
origin of the problem. We also recall the structure of the GZ basis for gl(1|n) representations,
and the conditions for unitarity. In section 3, we convert the general eigenvalue problem to a
simpler problem by switching to another set of odd generators for the Lie superalgebra gl(1|n).
In terms of the new set of generators, (1.1) has a simple expression: in fact it becomes an
element of a gl(1|1) subalgebra of gl(1|n). The branching gl(1|n) → gl(1|1) ⊕ gl(n − 1),
studied in section 4, leads to an answer of the eigenvalue problem. In the following section,
we construct the essential relation that expresses the highest weight vector of W with respect
to the new set of generators in terms of the ‘old’ GZ-basis vectors. Combining this with
the known actions on such GZ-basis vectors yields a solution for the eigenvector problem.
Then we illustrate our results for two important classes of unitary representations. Section 6
deals with Fock representations of gl(1|n). These representations are quite simple, and have
been considered in [7]. Nevertheless, the eigenvector problem turned out to be difficult and
was left as an open problem in [1]. With the techniques developed in this paper, a simple
solution to the eigenvector problem is obtained. Section 7 deals with another relatively simple
class of representations, the ladder representations of gl(1|n). Also here, we illustrate how
our techniques lead to a complete solution of the eigenvalue and eigenvector problem. We
conclude the paper by some final remarks.

2. Description of the problem

In several models [8–12] a quantum system consisting of a linear chain of n identical harmonic
oscillators coupled by springs is used. The Hamiltonian of such a system is given by
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Ĥ =
n∑

r=1

(
p̂2

r

2µ
+

µω2

2
q̂2

r +
cµ

2
(q̂r − q̂r+1)

2

)
, (2.1)

where each oscillator has mass µ and frequency ω, q̂r and p̂r stand for the position and
momentum operator for the rth oscillator (or rather, q̂r measures the displacement of the rth
mass point with respect to its equilibrium position), and c > 0 is the coupling strength. Often,
one assumes periodic boundary conditions (also in this paper), i.e.

q̂n+1 ≡ q̂1. (2.2)

In the solution for such a system, one introduces finite Fourier transforms of the (self-adjoint)
operators q̂r and p̂r by

q̂r =
n∑

j=1

√
h̄

2µnωj

(
e−2π ijr/na+

j + e2π ijr/na−
j

)
, (2.3)

p̂r =
n∑

j=1

i

√
µωjh̄

2n

(
e−2π ijr/na+

j − e2π ijr/na−
j

)
, (2.4)

where ωj are positive numbers with

ω2
j = ω2 + 2c − 2c cos

(
2π j

n

)
= ω2 + 4c sin2

(
π j

n

)
, (2.5)

and a±
j are operators satisfying

(
a±

j

)† = a∓
j . In terms of these new operators, the Hamiltonian

reads

Ĥ =
n∑

j=1

h̄ωj

2
(a−

j a+
j + a+

j a−
j ). (2.6)

If one assumes the canonical commutation relations for the operators q̂r and p̂r , then the
operators a±

j satisfy the usual boson relations
[
a±

j , a±
k

] = 0,
[
a−

j , a+
k

] = δjk , and the
corresponding solutions are easy to describe. In [1], however, it was shown that one can
relax the canonical commutation relations for this system, and instead approach it as a Wigner
quantum system [13]–[15], leading to other classes of solutions besides the canonical ones.
In this approach, the canonical commutation relations are not required but replaced by the
quantization relations following from the compatibility between Hamilton’s equations and the
Heisenberg equations. Explicitly, these relations are [1]

 n∑
j=1

ωj

(
a−

j a+
j + a+

j a−
j

)
, a±

k


 = ±2ωka

±
k , (k = 1, 2 . . . , n). (2.7)

These are triple relations involving anticommutators and commutators, and it was shown [1]
that such relations have a solution in terms of generators of the Lie superalgebra gl(1|n)

[3, 4]. More explicitly, let gl(1|n) be the Lie superalgebra with standard basis elements ejk

(j, k = 0, 1, . . . , n), where ek0 and e0k (k = 1, . . . , n) are odd elements and the remaining
basis elements are even, with bracket

[[eij , ekl]] = δjkeil − (−1)deg(eij ) deg(ekl )δilekj , (2.8)

and star condition e
†
ij = eji . Then a solution of (2.7) is provided by

a−
j =

√
2βj

ωj

ej0, a+
j =

√
2βj

ωj

e0j , (j = 1, . . . , n), (2.9)
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where

βj = −ωj +
1

n − 1

n∑
k=1

ωk, (j = 1, . . . , n). (2.10)

All these numbers βj should be non-negative, and in [1] we have shown that this is possible
provided the coupling constant c is bounded by some critical value c0 (which we shall assume
to be the case here). So, for this gl(1|n) solution, one finds

q̂r =
√

h̄

µn

n∑
j=1

(γj e−2π ijr/ne0j + γj e2π ijr/nej0), (2.11)

p̂r = i

√
µh̄

n

n∑
j=1

(
√

βj e−2π ijr/ne0j − √
βj e2π ijr/nej0), (2.12)

where we introduce yet another set of positive numbers

γj = √
βj/ωj (j = 1, . . . , n) and γ = γ 2

1 + · · · + γ 2
n . (2.13)

Equations (2.11) and (2.12) give a description of the ‘physical operators’ q̂r and p̂r in terms
of gl(1|n) generators. In order to study properties of such operators (spectra or eigenvalues,
eigenvectors), one should consider representations of gl(1|n) for which the star condition
e
†
ij = eji is satisfied. These are the star representations or unitary representations W([m]n+1)

of gl(1|n), and they are well known [5].
As (2.11) and (2.12) are the ‘physical operators’ corresponding to position and momentum

of the rth oscillator, we are interested in the following problems:

(a) describe the eigenvalues of q̂r and p̂r in any unitary representation W([m]n+1);
(b) construct the eigenvectors of q̂r and p̂r in W([m]n+1).

At first sight, these problems might look easy. However, a closer look at the explicit actions
of the gl(1|n) generators e0j and ej0 on the GZ basis, see equations (2.25) and (2.26) in [6]
or (3.9)–(3.8) in the appendix, shows that these expressions are extremely complicated. Since
(2.11) and (2.12) are linear combinations of the generators e0j and ej0, one could expect that
the answer to the above questions gives rise to unfeasible computations.

Nonetheless, we shall show that a group theoretical approach (using subalgebras,
branching rules, and a proper use of two inequivalent GZ-bases) leads to a solution for
these two problems.

We end this section by describing the relevant representations, i.e. the unitary irreducible
representations W([m]n+1) of gl(1|n) [5], and their GZ basis [6]; see also [16, 17]. The finite-
dimensional irreducible representations (simple modules) W([m]n+1) of the Lie superalgebra
gl(1|n) are in one-to-one correspondence with the set of all complex (n + 1)-tuples [3, 4]

[m]n+1 = [m0,n+1,m1,n+1, . . . , mn,n+1], (2.14)

for which

mi,n+1 − mj,n+1 ∈ Z+ (1 � i < j � n). (2.15)

In a standard weight space basis, the highest weight � of W([m]n+1) is given by

� = m0,n+1ε +
n∑

i=1

mi,n+1δi . (2.16)
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A Gel’fand–Zetlin basis for the gl(1|n) representation W([m]n+1) has been given and
discussed in [6, proposition 2], where it was shown that the set of vectors

|m)e =

∣∣∣∣∣∣∣∣∣∣∣

m0,n+1 m1,n+1 · · · mn−2,n+1 mn−1,n+1 mn,n+1

m1n · · · mn−2,n mn−1,n mnn

m1,n−1 · · · mn−2,n−1 mn−1,n−1

... . .
.

m11




e

(2.17)

satisfying the conditions

(GZ1) mi,n+1 are fixed and mi,n+1 − mj,n+1 ∈ Z+ (1 � i < j � n),
(GZ2) min − mi,n+1 = θi ∈ {0, 1} (1 � i � n),
(GZ3) if for k ∈ {1, . . . , n} one has m0,n+1 + mk,n+1 = k − 1 then θk = 0,
(GZ4) mi,j+1 − mij ∈ Z+ and mij − mi+1,j+1 ∈ Z+ (1 � i � j � n − 1),

constitute a basis in W([m]n+1). We have added here a subscript e to the vectors |m)e in order
to distinguish them from another basis |m)E for W([m]n+1) which will be introduced later. For
the explicit action of a set of gl(1|n) generators on the basis vectors (2.17), see (A.1)–(A.6).
Following (2.14), it will be convenient to denote the elements of the other rows in |m)e, or
more generally k-tuples, by

[m]k = [m1k,m2k, . . . , mkk], (k = 1, . . . , n). (2.18)

With respect to the inner product 〈|m′)e, |m)e〉 = δm,m′ and the condition e
†
ij = eji , the

representations W([m]n+1) are unitary if and only if one of the following conditions is satisfied
[6, proposition 3].

(U1) The highest weight is real and

m0,n+1 + mn,n+1 − n + 1 > 0. (2.19)

In this case, the representation is typical.
(U2) The highest weight is real and there exists a k ∈ {1, 2, . . . , n} such that

m0,n+1 + mk,n+1 = k − 1, mk,n+1 = mk+1,n+1 = · · · = mn,n+1. (2.20)

In this case, the representation is atypical of type k.

Note that the highest weight vector of W([m]n+1), denoted by |�)e, is given by

|�)e =

∣∣∣∣∣∣∣∣∣∣∣

m0,n+1 m1,n+1 · · · mn−2,n+1 mn−1,n+1 mn,n+1

m1,n+1 · · · mn−2,n+1 mn−1,n+1 mn,n+1

m1,n+1 · · · mn−2,n+1 mn−1,n+1

... . .
.

m1,n+1




e

. (2.21)

Finally, note that the GZ-basis vectors |m)e are stationary states of the quantum system.
Indeed, by (2.6), (2.8) and (2.9), one has

Ĥ = h̄




 n∑

j=1

βj


 e00 +

n∑
j=1

βjejj


 , (2.22)

so one finds, using (A.1)–(A.2):

Ĥ |m)e = h̄Ẽm|m)e, (2.23)

with

Ẽm =

 n∑

j=1

βj


(

n∑
l=0

ml,n+1 −
n∑

l=1

mln

)
+

n∑
j=1

βj

(
j∑

l=1

mlj −
j−1∑
l=1

ml,j−1

)
. (2.24)
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3. Another set of gl(1|n) generators

The purpose is to describe the eigenvalues of q̂r and p̂r , and to give their eigenvectors in terms
of the GZ-basis vectors |m)e of W([m]n+1), i.e. in terms of the stationary states. The structure
of q̂r and p̂r in terms of the generators e0j and ej0 is similar, see (2.11) and (2.12), so it is
sufficient to concentrate on q̂r only, with

q̂r =
√

h̄

µn

n∑
j=1

(γj e−2π ijr/ne0j + γj e2π ijr/nej0). (3.1)

Since the description of q̂r in terms of e0j and ej0 is complicated (at least for the action on
GZ-basis vectors), we shall switch to another set of gl(1|n) generators. For this purpose, recall
the following proposition [18].

Proposition 1. The Lie superalgebra generated by 2n odd elements ẽj0 and ẽ0j , with
1 � j � n, subject to the relations

{ẽj0, ẽk0} = {ẽ0j , ẽ0k} = 0, (3.2)

[{ẽj0, ẽ0k}, ẽl0] = δkl ẽj0 − δjkẽl0, (3.3)

[{ẽj0, ẽ0k}, ẽ0l] = δjkẽ0l − δlj ẽ0k, (3.4)

is isomorphic to sl(1|n).

So clearly, our standard elements ej0 and e0j generate sl(1|n). The only difference between
sl(1|n) and gl(1|n) comes from the Cartan subalgebra: for gl(1|n) this is spanned by all
elements ejj (0 � j � n), and for sl(1|n) by e00 + ejj (1 � j � n).

The following proposition is easy but essential in our analysis.

Proposition 2. Let U = (Ujl)1�j�n,1�l�n be a unitary n × n matrix, and let

Ej0 =
n∑

l=1

Ujlel0 and E0j =
n∑

l=1

U ∗
j le0l (1 � j � n). (3.5)

Then the elements Ej0 and E0j satisfy the same defining relations (3.2)–(3.4) as the elements
ej0 and e0j . In other words, also the Ej0 and E0j generate sl(1|n).

Proof. It is a simple exercise to verify that the elements Ej0 and E0j satisfy the relations
(3.2)–(3.4). As an example, consider

[{Ej0, E0k}, El0] =
∑

i1,i2,i3

Uji1U
∗
ki2

Uli3

[{
ei10, e0i2

}
, ei30

]
=

∑
i1,i2,i3

Uji1U
∗
ki2

Uli3

(
δi2i3ei10 − δi1i2ei30

)
=
∑
i2

U ∗
ki2

Uli2

∑
i1

Uji1ei10 −
∑
i2

Uji2U
∗
ki2

∑
i3

Uli3ei30

=
∑
i2

Uli2U
†
i2k

∑
i1

Uji1ei10 −
∑
i2

Uji2U
†
i2k

∑
i3

Uli3ei30

= δlkEj0 − δjkEl0. �
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Using this proposition, it will be useful to identify the two parts of (3.1),∑n
j=1 γj e−2π ijr/ne0j and

∑n
j=1 γj e2π ijr/nej0 as single generators E0k and Ek0 for some k.

Hence, let us define

En0 = 1√
γ 2

1 + · · · + γ 2
n

n∑
j=1

γj e2π ijr/nej0 = 1√
γ

n∑
j=1

γj e2π ijr/nej0, (3.6)

E0n = 1√
γ 2

1 + · · · + γ 2
n

n∑
j=1

γj e−2π ijr/ne0j = 1√
γ

n∑
j=1

γj e−2π ijr/ne0j . (3.7)

Note that we have divided by
√

γ , so that the coefficients are entries of a unitary matrix U, as
required in (3.5). Next, we should supplement (3.6) and (3.7) by other linear combinations of
the ej0 and e0j , such that the transition matrix is unitary. In principle, any matrix U with last
row Unj = γj e2π ijr/n/

√
γ could be proposed. However, in order to make computations for

eigenvectors easier, we will propose a matrix U that is as simple as possible, i.e. with as many
zero entries as possible. Note that one cannot make a triangular choice for U, since the only
triangular matrix that is also unitary is diagonal. So we will make a choice that is as close
as possible to a triangular matrix, namely a Hessenberg matrix, so that all entries Ujl with
l > j + 1 are zero. This leads to the following expressions, for j = 1, 2, . . . , n − 1:

Ej0 = 1√
1

γ 2
1 +···+γ 2

j

+ 1
γ 2

j+1

(
j∑

l=1

e2π irl/n

γ 2
1 + · · · + γ 2

j

γlel0 − 1

γj+1
e2π ir(j+1)/nej+1,0

)
, (3.8)

E0j = 1√
1

γ 2
1 +···+γ 2

j

+ 1
γ 2

j+1

(
j∑

l=1

e−2π irl/n

γ 2
1 + · · · + γ 2

j

γle0l − 1

γj+1
e−2π ir(j+1)/ne0,j+1

)
. (3.9)

It is a simple exercise to verify that the transition matrix U defined by means of (3.8) and (3.6)
is indeed a unitary matrix. So operators (3.6)–(3.9) form a set of generators for sl(1|n), such
that the position operator q̂r becomes

q̂r =
√

h̄γ

µn
(E0n + En0). (3.10)

Note that for every different position operator q̂r (i.e. for every different r), one has a different
set of generators, so we should denote them by E

(r)
j0 and E

(r)
0j . This overloads the notation,

however. So we shall assume that r is fixed, and drop the superscript (r) from the generators.
The elements E0j and Ej0 generate sl(1|n). The new odd basis elements of sl(1|n)

are directly given by (3.6)–(3.9). The new even basis elements of sl(1|n) are of the form
Ejk = {Ej0, E0k} with j �= k, and {Ej0, E0j }. Since, without writing the matrix elements of
U explicitly as in (3.6)–(3.9), for j = 1, 2, . . . , n:

{Ej0, E0j } = e00 +
n∑

l=1

n∑
k=1

UjlU
∗
jkelk (3.11)

one can extend the new sl(1|n) basis to a gl(1|n) basis by putting E00 = e00, and Ejj equal to
the remaining part in (3.11), i.e. Ejj = {Ej0, E0j } − e00.

So we have a new basis Eij for gl(1|n), satisfying the same relations (2.8) as the old
basis eij , and the same star conditions E

†
ij = Eji . In terms of this new basis, the position
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operator q̂r has a simple expression, see (3.10). Due to this simple expression, the eigenvalues
and eigenvectors of q̂r can be computed. With respect to this new basis, the representation
W([m]n+1) has a new highest weight vector, to be denoted by |�)E . One essential task will
be the expansion of |�)E in terms of the old GZ-basis vectors |m)e. Also with respect to this
new basis Eij , one can define a new GZ basis for W([m]n+1), the vectors of this basis being
denoted by |m)E . The action of Eij on vectors |m)E is identical to the action of eij on vectors
|m)e.

In the following section, we shall consider the branching gl(1|n) → gl(1|1)⊕gl(n−1) for
W([m]n+1), with respect to this new basis. This will yield the eigenvalues of q̂r in W([m]n+1).
The (orthonormal) eigenvectors of q̂r are easy to describe in the |m)E basis of W([m]n+1). In
section 5, we make the connection between the old basis vectors |m)e and the new ones |m)E ,
leading to a description of the q̂r eigenvectors in the original basis.

4. On the decomposition gl(1|n) → gl(1|1) ⊕ gl(n − 1) for unitary representations

Consider the Lie superalgebra gl(1|n) with (new) basis elements Eij (i, j = 0, 1, . . . , n)

satisfying the standard relations (2.8). We consider the finite-dimensional unitary irreducible
representations W([m]n+1) with GZ-basis vectors |m)E . The action of Eij on |m)E is identical
to that of eij on |m)e (see (A.1)–(A.6)). In particular, the diagonal action reads

E00|m)E =

m0,n+1 −

n∑
j=1

θj


 |m)E;

Ejj |m)E =
(

j∑
l=1

mlj −
j−1∑
l=1

ml,j−1

)
|m)E, (1 � j � n).

(4.1)

In order to describe the decomposition gl(1|n) → gl(1|1) ⊕ gl(n − 1) for such unitary
representations, let us first list (and fix the notation for) the unitary representations of gl(1|1)

[6]. Let {e00, e10, e01, e11} be a basis for gl(1|1) and denote the highest weight labels
[m0,2,m1,2] by [a, b] and the representation itself by W([a, b]). Then, following (U1)–(U2),
there are two possibilities.

(1) A typical unitary gl(1|1) representation W([a, b]), with a, b ∈ R and a + b > 0. The GZ
basis of the representation consists of two vectors only, which we shall denote by v and
w, and the action is given by

e00v = av, e00w = (a − 1)w,

e11v = bv, e11w = (b + 1)w,

e01v = 0, e01w = √
a + bv,

e10v = √
a + bw, e10w = 0.

(4.2)

The weights of the representation are (a, b) and (a − 1, b + 1).
(2) An atypical unitary gl(1|1) representation W([a, b]), with a, b ∈ R and a + b = 0. The

GZ basis consists of one vector only, denoted by v, and the only non-zero actions are

e00v = av, e11v = −av. (4.3)

The weight of the representation is (a,−a).

The new GZ basis (and the new basis Eij for gl(1|n)) can now be used to find the
decomposition gl(1|n) → gl(1|1) ⊕ gl(n − 1) for unitary gl(1|n) representations. For this
purpose, it is convenient to take

{E00, En0, E0n, Enn} (4.4)



Eigenvalue problem in gl(1|n) 3877

as the basis elements of gl(1|1), and {Eij |1 � i, j � n− 1} as the basis elements of gl(n− 1).
Indeed, with this choice the actions of the gl(1|1) generators on |m)E only change the labels in
the second row of the GZ pattern (see (A.5)–(A.6)), and the actions of the gl(n−1) generators
only change the last (n − 1) rows (see (A.3)–(A.4) for 2 � k � n − 1). Otherwise said, the
last (n − 1) rows of |m)E coincide with the usual gl(n − 1) GZ-basis labels. Note that the
action of the diagonal elements of gl(1|1) is given by

E00|m)E = a|m)E, Enn|m)E = b|m)E, (4.5)

with

a =
n∑

j=0

mj,n+1 −
n∑

j=1

mjn = m0,n+1 −
n∑

j=1

θj , (4.6)

b =
n∑

j=1

mjn −
n−1∑
j=1

mj,n−1. (4.7)

For a given unitary representation W([m]n+1) of gl(1|n), the decomposition to gl(1|1)⊕gl(n−
1) is thus completely determined by listing all possible rows [m]n and [m]n−1, i.e.

m1n = m1,n+1 + θ1, · · · mn−1,n = mn−1,n+1 + θn−1, mnn = mn,n+1 + θn

m1,n−1, · · · mn−1,n−1
(4.8)

subject to conditions (GZ3) and (GZ4), with θi ∈ {0, 1}.
Let us investigate the gl(1|1) weight (a, b) of a vector |m)E more carefully. For a typical

unitary representation W([m]n+1), one finds

a + b =
n∑

j=0

mj,n+1 −
n−1∑
j=1

mj,n−1 = m0,n+1 + mn,n+1 +
n−1∑
j=1

(mj,n+1 − mj,n−1)

= m0,n+1 + mn,n+1 +
n−1∑
j=1

(mjn − mj,n−1) −
n−1∑
j=1

θj .

But by (GZ4) mjn − mj,n−1 � 0, and by (2.19) m0,n+1 + mn,n+1 > n − 1, hence

a + b > n − 1 −
n−1∑
j=1

θj � 0,

so a + b > 0 and (a, b) can be the weight of a typical two-dimensional gl(1|1) representation
only.

For an atypical unitary representation W([m]n+1), satisfying (2.20), (GZ2)–(GZ4) imply
that θk = θk+1 = · · · = θn = 0. Then

a + b = m0,n+1 + mn,n+1 +
n−1∑
j=1

(mjn − mj,n−1) −
n−1∑
j=1

θj

= m0,n+1 + mk,n+1 +
n−1∑
j=1

(mjn − mj,n−1) −
k−1∑
j=1

θj

= (k − 1) −
k−1∑
j=1

θj +
n−1∑
j=1

(mjn − mj,n−1).
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So a + b � 0, and a + b can be equal to zero if and only if

θ1 = θ2 = · · · = θk−1 = 1, and mj,n−1 = mjn for all j = 1, 2, . . . , n − 1. (4.9)

Consequently, in the gl(1|n) → gl(1|1) ⊕ gl(n − 1) decomposition

W([m]n+1) →
⊕

W([a, b]) × V ([m]n−1), (4.10)

the representations W([a, b]) are always typical if W([m]n+1) is typical. If W([m]n+1) is
atypical of type k, again all W([a, b]) are typical, except for one single component where
a + b = 0 and where the labels of the gl(n − 1) representation V ([m]n−1) are given by

mj,n−1 = mjn = mj,n+1 + 1 for j = 1, . . . , k − 1;
mj,n−1 = mjn = mj,n+1 for j = k, . . . , n − 1.

(4.11)

Following (4.8), for a fixed (n + 1)-tuple [m]n+1 satisfying (2.15), the set of (n− 1)-tuples
appearing in the decomposition to gl(n − 1) is given by

M([m]n+1) = {[m]n−1|mi,n+1 + 1 − mi,n−1, mi,n−1 − mi+1,n+1 ∈ Z+,

(i = 1, . . . , n − 1); mi,n−1 − mi+1,n−1 ∈ Z+, (i = 1, . . . , n − 2)}. (4.12)

To see how often such a gl(n − 1) representation labelled by [m]n−1 appears in the
decomposition of W([m]n+1), one should count the number of allowed θi s in (4.8). Since each
θi ∈ {0, 1}, this number will be a power of 2. Whether both values for θi are allowed depends
not only on the (a)typicality of W([m]n+1), but also on the tuples [m]n+1 and [m]n−1 themselves
(whether some consecutive numbers are equal, whether some mi,n−1 is equal to mi,n+1 + 1,
etc). Both values for θi are allowed if mi−1,n−1 − mi,n+1 − 1 ∈ Z+ and mi,n+1 − mi,n−1 ∈ Z+

(for i = 1, the first condition disappears since m0,n−1 is not a GZ label, and for i = n the
second condition disappears since mn,n−1 is not a GZ label). So let us consider

T (mi−1,n−1 − mi,n+1 − 1 ∈ Z+ and mi,n+1 − mi,n−1 ∈ Z+), (4.13)

where T (A) = 1 if A is true and T (A) = 0 if A is false, and

N([m]n+1, [m]n−1) =
n∑

i=1

T (mi−1,n−1 − mi,n+1 − 1 ∈ Z+ and mi,n+1 − mi,n−1 ∈ Z+).

(4.14)

Then, for a typical gl(1|n) representation W([m]n+1), the number of gl(n − 1) representations
V ([m]n−1) appearing in the decomposition (with [m]n−1 ∈ M([m]n+1)) is given by

2N([m]n+1,[m]n−1). (4.15)

For a gl(1|n) representation that is atypical of type k, the result is essentially the same but now
all θk = · · · = θn = 0. So in this case the result is still given by (4.15), except that the upper
bound of the sum in (4.14) is k − 1 instead of n. It will be convenient to have a notation for
the set of allowed n-tuples, for a given (n + 1)-tuple [m]n+1 and a given (n − 1)-tuple [m]n−1:

A([m]n+1, [m]n−1) = {[m]n|[m]n+1, [m]n and [m]n−1 satisfy (GZ2)–(GZ4)}. (4.16)

So the number of elements of A([m]n+1, [m]n−1) is given by (4.15).
Knowing the multiplicity of V ([m]n−1), one can now determine the gl(1|1) weights (a, b)

for each appearance of V ([m]n−1) in the decomposition of W([m]n+1), and collect these
according to irreducible representations of gl(1|1) (which are one or two dimensional). This
gives rise to the following:

W([m]n+1) →
⊕

[m]n−1∈M([m]n+1)

(
N−1⊕
i=0

(
N − 1

i

)
W([a − i, b + i])

)
× V ([m]n−1), (4.17)



Eigenvalue problem in gl(1|n) 3879

where

N ≡ N([m]n+1, [m]n−1),

a =
n∑

j=0

mj,n+1 − min
[m]n∈A([m]n+1,[m]n−1)


 n∑

j=1

mjn


 ,

b = −a +
n∑

j=0

mj,n+1 −
n−1∑
j=1

mj,n−1.

Note that for typical representations each N > 0. For representations atypical of type k, there
is one single (n − 1)-tuple [m]n−1 for which N = N([m]n+1, [m]n−1) = 0, namely the case
(4.11). For this (n − 1)-tuple, the term on the right-hand side of (4.17) should be replaced by

W([a,−a]) × V ([m]n−1). (4.18)

It will be important to note that the range of values for a + b in W([m]n+1) goes in steps
of 1 and follows from (4.17); it is given by

m0,n+1 + m1,n+1, m0,n+1 + m1,n+1 − 1, . . . , m0,n+1 + mn,n+1 − n + 1(> 0) (4.19)

for typical representations, and by

m0,n+1 + m1,n+1, m0,n+1 + m1,n+1 − 1, . . . , m0,n+1 + mk,n+1 − k + 1(= 0) (4.20)

for representations atypical of type k.
We are now in a position to solve the eigenvalue problem for q̂r . Remember that

q̂r =
√

h̄γ

µn
(E0n + En0), see (2.11). Hence in a two-dimensional typical gl(1|1) representation

W([a, b]) (a + b > 0), it follows from (4.2) and (4.4) that the eigenvalues of E0n + En0 are
±√

a + b, whereas in a one-dimensional atypical gl(1|1) representation W([a, b]) (a +b = 0),
the eigenvalue is 0.

So we find the following result.

Theorem 3. Let W([m]n+1) be a unitary representation of gl(1|n).

(a) If W([m]n+1) is typical, the eigenvalues of q̂r are given by ±
√

h̄γK

µn
where the range of K,

in steps of 1, is determined by

K = m0,n+1 + m1,n+1, m0,n+1 + m1,n+1 − 1, . . . , m0,n+1 + mn,n+1 − n + 1. (4.21)

The multiplicity of each eigenvalue ±
√

h̄γK

µn
is determined by (4.17) and is of the form

∑
2N dim(V ([m]n−1)), (4.22)

where the sum is over all (n−1)-tuples [m]n−1 from M([m]n+1) for which
∑n

j=0 mj,n+1 −∑n−1
j=1 mj,n−1 = K . The dimensions of gl(n − 1) representations V ([m]n−1) are well

known [19, p 33].

(b) If W([m]n+1) is atypical of type k, the eigenvalues of q̂r are given by ±
√

h̄γK

µn
, where

K = 0, 1, 2, . . . , m0,n+1 + m1,n+1. The multiplicity of each nonzero eigenvalue is again
determined by (4.17) and given by a formula similar to (4.22). The multiplicity of the zero
eigenvalue is dim V ([m]n−1), with [m]n−1 given by (4.11).
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5. Relation between the two GZ-basis vectors

Consider the unitary gl(1|n) representation W([m]n+1). On the one hand, W([m]n+1) has
a GZ basis of vectors |m)e, with the standard action of eij on these vectors determined by
(A.1)–(A.8). The highest weight vector |�)e with respect to this gl(1|n) basis is given by
(2.21). Note that the highest weight vector is uniquely characterized by

ej,j+1|�)e = 0 (1 � j � n − 1), (5.1)

e0j |�)e = 0 (1 � j � n). (5.2)

The last condition is guaranteed by the fact that for |�)e all θi = 0 in (GZ2). The first
condition follows from action (A.3).

On the other hand, we have considered a new basis Eij for gl(1|n), determined by (3.6)–
(3.9). With respect to this new basis, W([m]n+1) has a new GZ basis with vectors |m)E ,
and a new highest weight vector |�)E . We want to find an expression for |�)E as a linear
combination of vectors |m)e:

|�)E =
∑

cm|m)e. (5.3)

So, we should require

Ej,j+1|�)E = 0 (1 � j � n − 1), (5.4)

E0j |�)E = 0 (1 � j � n). (5.5)

Since each E0j is a linear combination of elements e0l , it follows that the linear combination
in (5.3) consists of m-patterns with all θi = 0 in (GZ2). So we should examine the elements
Ej,j+1 more closely, and in particular their action on vectors |m)e.

We can compute Ej,j+1 by means of (3.8)–(3.9) and Ej,j+1 = {Ej0, E0,j+1}. For
1 � j � n − 2, this gives

Ej,j+1 = γj+1γj+2

√√√√ γ 2
1 + · · · + γ 2

j

γ 2
1 + · · · + γ 2

j+2

(
j∑

l1=1

j+1∑
l2=1

e2π ir(l1−l2)/nγl1γl2(
γ 2

1 + · · · + γ 2
j

)(
γ 2

1 + · · · + γ 2
j+1

)el1l2

−
j∑

l1=1

e2π ir(l1−j−2)/nγl1(
γ 2

1 + · · · + γ 2
j

)
γj+2

el1,j+2 −
j+1∑
l2=1

e2π ir(j+1−l2)/nγl2(
γ 2

1 + · · · + γ 2
j+1

)
γj+1

ej+1,l2 +
e−2π ir/n

γj+1γj+2
ej+1,j+2

)
,

(5.6)

and for j = n − 1:

En−1,n =
γn

√
γ 2

1 + · · · + γ 2
n−1

γ 2
1 + · · · + γ 2

n

(
n−1∑
l1=1

n∑
l2=1

e2π ir(l1−l2)/nγl1γl2(
γ 2

1 + · · · + γ 2
n−1

)el1l2 −
n∑

l=1

e−2π irl/nγl

γn

enl

)
. (5.7)

The following type of vectors from W([m]n+1) will play an essential role:

|m(d))e =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m0,n+1 m1,n+1 m2,n+1 · · · · · · mn−2,n+1 mn−1,n+1 mn,n+1

m1,n+1 m2,n+1 · · · · · · mn−2,n+1 mn−1,n+1 mn,n+1

m1,n+1 m2,n+1 · · · · · · mn−2,n+1 mn−1,n−1

...
...

...
... . .

.

m1,n+1 m2,n+1 m3,n+1 m44

m1,n+1 m2,n+1 m33

m1,n+1 m22

m11




e

. (5.8)
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So in this expression, all labels in the GZ pattern are fixed, except the (n − 1) bottom labels
d = (m11,m22, . . . , mn−1,n−1) which are allowed to vary according to (GZ4).

Now we have the following result.

Proposition 4. The highest weight vector of W([m]n+1) according to the new gl(1|n) basis
Eij is given by

|�)E = 1√
N

mn−1,n+1∑
mn−1,n−1=mn,n+1

mn−2,n+1∑
mn−2,n−2=mn−1,n−1

· · ·
m2,n+1∑

m22=m33

m1,n+1∑
m11=m22

(−1)m11+···+mn−1,n−1

× e−2π ir(m11+···+mn−1,n−1)/n

[(
m1,n+1 − m22

m1,n+1 − m11

)(
m2,n+1 − m33

m2,n+1 − m22

)
· · ·

× · · ·
(

mn−2,n+1 − mn−1,n−1

mn−2,n+1 − mn−2,n−2

)(
mn−1,n+1 − mn,n+1

mn−1,n+1 − mn−1,n−1

)]1/2

× γ
m1,n+1−m11

1 γ
m11−m22
2 γ

m22−m33
3 . . . γ

mn−2,n−2−mn−1,n−1

n−1 γ mn−1,n−1−mn,n+1
n |m(d))e, (5.9)

where N is a normalization factor given by

N = (
γ 2

1 + γ 2
2

)m1,n+1−m2,n+1
(
γ 2

1 + γ 2
2 + γ 2

3

)m2,n+1−m3,n+1 · · · (γ 2
1 + · · · + γ 2

n

)mn−1,n+1−mn,n+1
. (5.10)

Proof. We shall only give a sketch of the proof, which requires careful computations.
Essentially, one considers for 1 � j � n − 1 the action Ej,j+1|�)E , using (5.6)–(5.7), (5.9)
and the explicit action on the GZ basis given by (A.2)–(A.4). In the resulting expression, one
combines all contributions with the same GZ pattern and verifies that the coefficients become
zero. In this computation, it is essential to know the action of an element el1l2 on vectors of
the form (5.8). From the general action (A.2)–(A.4), one deduces

• if l1 = l2, then el1l2 |m(d))e gives just a constant times |m(d))e;
• if l1 < l2, then el1l2 |m(d))e gives only one term with a vector which is again of the form

(5.8), and
• if l1 > l2, then el1l2 |m(d))e gives a linear combination of several vectors. Some of these

vectors are of the form (5.8). The other vectors are not of the form (5.8): they have
the same labels as |m(d))e, but with one of the labels in row l decreased by 1, for every
l = l1 − 1, l1 − 2, . . . , l2.

A careful examination shows that taking together all contributions to vectors that are not of
type (5.8) in the expansion of Ej,j+1|�)E gives zero. So it remains to compute the coefficients
of vectors of the type (5.8) in the expansion of Ej,j+1|�)E (j = 1, . . . , n− 1). Explicitly, this
gives rise to a coefficient of the form∏j

i=1(mi,n+1 − mii)∏j−1
i=1 (mi,n+1 − mi+1,i+1)

+
j−1∑
l=1

(mll − ml+1,l+1)

∏j

i=l+1(mi,n+1 − mii)∏j−1
i=l (mi,n+1 − mi+1,i+1)

− mj,n+1 + mjj .

(5.11)

Denote mi,n+1 = xi and mii = yi . We shall prove that∏j

i=1(xi − yi)∏j−1
i=1 (xi − yi+1)

+
j−1∑
l=1

(yl − yl+1)

∏j

i=l+1(xi − yi)∏j−1
i=l (xi − yi+1)

= xj − yj (5.12)

for arbitrary variables xi and yi , implying that (5.11) is indeed always zero. Identity (5.12) is
true for j = 1. Suppose it is true for a fixed j , and let us consider it for j + 1:∏j+1

i=1(xi − yi)∏j

i=1(xi − yi+1)
+

j∑
l=1

(yl − yl+1)

∏j+1
i=l+1(xi − yi)∏j

i=l (xi − yi+1)
= xj+1 − yj+1. (5.13)
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The left-hand side of (5.13) yields, using (5.12) and induction on j :

(xj+1 − yj+1)

(xj − yj+1)

( ∏j

i=1(xi − yi)∏j−1
i=1 (xi − yi+1)

+
j−1∑
l=1

(yl − yl+1)

∏j

i=l+1(xi − yi)∏j−1
i=l (xi − yi+1)

)

+ (yj − yj+1)
(xj+1 − yj+1)

(xj − yj+1)
= (xj+1 − yj+1)

(xj − yj+1)
(xj − yj )

+ (yj − yj+1)
(xj+1 − yj+1)

(xj − yj+1)
= xj+1 − yj+1.

So the identity holds in general. This shows that all coefficients in the expansion of Ej,j+1|�)E
are zero, in other words Ej,j+1|�)E = 0.

To see that N gives the right normalization coefficient, one can simply expand the right-
hand side of (5.10). This gives, after appropriate relabelling of the summation indices:

mn−1,n+1∑
kn−1=mn,n+1

mn−2,n+1∑
kn−2=kn−1

· · ·
m2,n+1∑
k2=k3

m1,n+1∑
k1=k2

(
m1,n+1 − k2

m1,n+1 − k1

)(
m2,n+1 − k3

m2,n+1 − k2

)
· · · (5.14)

· · ·
(

mn−1,n+1 − mn,n+1

mn−1,n+1 − kn−1

)
γ

2(m1,n+1−k1)

1 γ
2(k1−k2)
2 γ

2(k2−k3)
3 . . . γ 2(kn−1−mn,n+1)

n . (5.15)

Clearly, this is just the norm of the vector given as a summand on the right-hand side of (5.9).�

In principle, we now have a solution to our eigenvector problem, i.e. we can give a set of
orthonormal eigenvectors of q̂r for W([m]n+1) in terms of the basis |m)e. First of all, (4.17)
gives the decomposition of W([m]n+1) with respect to gl(1|1) ⊕ gl(n − 1), so from this step
one can express the weight vectors v and w of every W([a, b]) (a + b > 0) in terms of vectors
|m)E . Then (4.2) and (2.11) imply that the eigenvectors of q̂r are (v ± w)/

√
2:

q̂r

v ± w√
2

= ±
√

h̄γ

µn

√
a + b

v ± w√
2

. (5.16)

But in principle every |m)E , and thus also v and w, can be expressed as powers of Eij (i > j)

acting on |�)E (in practice this can be hard, though). The rest is now routine: write every
such Eij in terms of eij , and use (5.9). This leads to an expression of the eigenvectors in terms
of the basis |m)e.

In the following sections, we shall illustrate how this works for two special types of
unitary representations.

6. The Fock representations W ([p, 0, . . . , 0]) ≡ W (p)

One interesting class of representations [7] of gl(1|n) is that with [m]n+1 = [p, 0, . . . , 0], i.e.
with highest weight � = pε. The representation space W([p, 0, . . . , 0]) is simply denoted by
W(p). It follows from (U1)-(U2) that W(p) is unitary when either p > n − 1 (typical case)
or else p = 0, 1, . . . , n − 1 (atypical of type p + 1). In the notation of (2.17), the GZ patterns
of W(p) consist of zeros and ones only (apart from the label p), so it will be convenient to use
a simpler notation for these vectors. The GZ-basis vectors of W(p) will simply be denoted
by w(ϕ1, . . . , ϕn) ≡ w(ϕ), where the relation to the GZ labels is determined by [6]

ϕi =
i∑

j=1

mji −
i−1∑
j=1

mj,i−1. (6.1)
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The constraints (GZ2)–(GZ4) for the GZ labels lead to ϕi ∈ {0, 1} and
∑n

i=1 ϕi � min(p, n).
The representations W(p) and the basis vectors w(ϕ1, . . . , ϕn) have been constructed by means
of Fock space techniques, and the action of the gl(1|n) generators is very simple, see [7]. The
Fock construction gives all vectors in terms of the highest weight vector |�)e ≡ w(0, . . . , 0):

w(ϕ) = w(ϕ1, . . . , ϕn) = e
ϕ1
10e

ϕ2
20 · · · eϕn

n0√
p(p − 1) · · · (p − |ϕ| + 1)

w(0, . . . , 0),

where |ϕ| = ∑
ϕi . The action of the eij on such vectors is determined by (1 � k � n):

e00w(ϕ) = (p − |ϕ|)w(ϕ), (6.2)

ekkw(ϕ) = ϕkw(ϕ), (6.3)

ek0w(ϕ) = (1 − ϕk)(−1)ϕ1+···+ϕk−1
√

p − |ϕ|w(ϕ1, . . . , ϕk + 1, . . . , ϕn), (6.4)

e0kw(ϕ) = ϕk(−1)ϕ1+···+ϕk−1
√

p − |ϕ| + 1w(ϕ1, . . . , ϕk − 1, . . . , ϕn). (6.5)

Now we introduce the second GZ basis, denoted by |m)E in the previous paragraphs.
Analogous to the previous basis, we shall use a simpler notation, namely v(φ) =
v(φ1, . . . , φn), with each φi ∈ {0, 1}. This basis is defined by

v(φ) = v(φ1, . . . , φn) ≡ E
φ1
10E

φ2
20 · · · Eφn

n0√
p(p − 1) · · · (p − |φ| + 1)

v(0, . . . , 0), (6.6)

where Ej0 is determined by (3.6) and (3.8), and v(0, . . . , 0) is the highest weight vector
|�)E with respect to the Eij basis of gl(1|n). This vector is given by (5.9). However, in
the current case there is only one vector of the type (5.8), so |�)E = |�)e, in other words
v(0, . . . , 0) = w(0, . . . , 0). This implies, in particular, that v(φ) is a linear combination of
vectors w(ϕ) with |ϕ| = |φ|.

For the typical case, all N-values in (4.17) are 1, and the decomposition becomes

W(p) →
n−1⊕
K=0

W([p − K, 0]) × V ([1, . . . , 1︸ ︷︷ ︸
K

, 0, . . . , 0]), (6.7)

where the gl(n − 1) representation V ([1, . . . , 1, 0, . . . , 0]) has K ones and n − 1 − K

zeros, with dim V ([1, . . . , 1, 0, . . . , 0]) = (
n−1
K

)
. Consequently, q̂r has 2n eigenvalues

±xK = ±
√

h̄γ

µn
(p − K), where 0 � K � n − 1, with multiplicities

(
n−1
K

)
. The orthonormal

eigenvectors are

ψr,±xK ,φ = 1√
2
v(φ1, . . . , φn−1, 0) ± (−1)φ1+···+φn−1

√
2

v(φ1, . . . , φn−1, 1), (6.8)

where φ1 + · · · + φn−1 = K . It is indeed easy to check, with q̂r =
√

h̄γ

µn
(E0n + En0), that

q̂rψr,±xK ,φ = ±
√

h̄γ (p − K)

µn
ψr,±xK ,φ. (6.9)

Thus we have the following.

Proposition 5. In the typical representation W(p) = W([p, 0, . . . , 0]) (p > n − 1),

the operator q̂r has 2n distinct eigenvalues given by ±xK = ±
√

h̄γ

µn
(p − K), where

0 � K � n − 1. The multiplicity of the eigenvalue ±xK is
(
n−1
K

)
. The eigenvectors of

q̂r for the eigenvalue ±xK contain, when expanded in the standard basis w(ϕ), only vectors
with |ϕ| = K or |ϕ| = K + 1. A set of orthonormal eigenvectors is given by (6.8).
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What happens in the atypical case? Then p ∈ {0, 1, . . . , n − 1} and W(p) is atypical of
type p + 1. Now decomposition (4.17) becomes

W(p) →
p⊕

K=0

W([p − K, 0]) × V ([1, . . . , 1︸ ︷︷ ︸
K

, 0, . . . , 0]). (6.10)

Consequently, q̂r has 2p nonzero eigenvalues ±xK = ±
√

h̄γ

µn
(p − K), where 0 � K � p−1,

with multiplicities
(
n−1
K

)
, and one zero eigenvalue xp = 0 with multiplicity

(
n−1
p

)
. For a

nonzero eigenvalue, the orthonormal eigenvectors take the same form as (6.8). For the zero
eigenvalue, the orthonormal eigenvectors are simply all vectors v(φ) with |φ| = p and φn = 0.

Note that the spectrum of q̂r is independent of r, i.e. independent of the location of the
oscillator in the linear chain of n oscillators. The eigenvectors, however, do depend on r. This
is because in (6.6) the generators Ej0 do indeed depend on r, see (3.6) and (3.8).

Using (6.8), (6.6), (3.6) and (3.8), one can explicitly compute the coefficients

ψr,±x|φ|,φ =
∑

ϕ

C
ϕ
r,±x|φ|,φw(ϕ) (6.11)

for the expansion of the q̂r eigenvectors in terms of the stationary states w(ϕ). We have already
noted that on the right-hand side of (6.11), only terms with |ϕ| = |φ| or |ϕ| = |φ| + 1 can be
nonzero.

When the quantum system is in a fixed eigenstate w(ϕ) of Ĥ , then the probability of
measuring for q̂r the eigenvalue ±xK is given by

P(ϕ, r,±xK) =
∑

φ,φ1+φ2+···+φn−1=K

|Cϕ
r,±xK ,φ|2. (6.12)

Without giving details of the computations, we have deduced

P(ϕ, r, xK) =




1

2γ

n∑
j=1

(1 − ϕj )γ
2
j when |ϕ| = K

1

2γ

n∑
j=1

ϕjγ
2
j when |ϕ| = K + 1,

0 otherwise.

(6.13)

Since
P(ϕ, r,−xK) = P(ϕ, r, xK),

one has
P(ϕ, r, x|ϕ|) + P(ϕ, r, x|ϕ|−1) + P(ϕ, r,−x|ϕ|) + P(ϕ, r,−x|ϕ|−1) = 1,

implying the following: when the quantum system is in the stationary state w(ϕ), a
measurement of q̂r leads to four possible values ±x|ϕ|,±x|ϕ|−1, with probabilities given
by (6.12) and (6.13).

7. The ladder representations W ([1, p − 1, 0, . . . ↪ 0]) ≡ V (p)

Another interesting class of representations [6] of gl(1|n) is that with [m]n+1 = [1, p −
1, 0, . . . , 0], denoted by V (p). By (GZ1), p is a positive integer, and by (U2) it is a unitary
representation atypical of type 2. Notation (2.17) for the GZ patterns of V (p) has again too
many zeros to be convenient, so the vectors will be denoted in a simpler way. In this case, one
can write the |m)e s as w(θ; s1, s2 . . . , sn) ≡ w(θ; s), where

θ = p − m1n, s1 = m11, sk = m1k − m1,k−1 (k = 2, . . . , n). (7.1)
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Thus, all vectors of V (p) are described by

w(θ; s) ≡ w(θ; s1, s2, . . . , sn), θ ∈ {0, 1}, si ∈ {0, 1, 2, . . .}, and θ+s1+· · ·+sn = p.(7.2)

In this notation the highest weight vector is |�)e = w(1;p − 1, 0, . . . , 0). The action of the
gl(1|n) generators on the new basis (7.2) is given by (1 � k � n):

e00w(θ; s) = θw(θ; s), (7.3)

ekkw(θ; s) = skw(θ; s), (7.4)

ek0w(θ; s) = θ
√

sk + 1w(1 − θ; s1, . . . , sk + 1, . . . , sn), (7.5)

e0kw(θ; s) = (1 − θ)
√

skw(1 − θ; s1, . . . , sk − 1, . . . , sn). (7.6)

From these one deduces the action of other elements ekl . The ladder representations V (p) and
the basis vectors w(θ; s1, s2 . . . , sn) can also be constructed by means of negative root vectors
acting on the highest weight vector. In particular,

w(θ; s1, . . . , sn) = e
p−θ−∑n−1

j=1 sj

n,n−1 e
p−θ−∑n−2

j=1 sj

n−1,n−2 · · · ep−θ−∑2
j=1 sj

32 e
p−θ−∑1

j=1 sj

21 e1−θ
10√

p1−θ
∏n−1

k=1

(
p − θ − ∑k

j=1 sj

)
!(sk + 1)p−θ−∑k

j=1 sj

w(1;p − 1, 0, . . . , 0),

where (a)j = a(a + 1) · · · (a + j − 1) is the Pochhammer symbol or rising factorial.
Now we also introduce the second GZ basis |m)E , but in the same simpler notation,

namely v(φ; t) = v(φ; t1, . . . , tn), with φ ∈ {0, 1}, ti ∈ Z+ and φ + t1 + · · · + tn = p. This
basis is defined by

v(φ; t1, . . . , tn) = E
p−φ−∑n−1

j=1 tj

n,n−1 E
p−φ−∑n−2

j=1 tj

n−1,n−2 · · · Ep−φ−∑2
j=1 tj

32 E
p−φ−∑1

j=1 tj

21 E
1−φ

10√
p1−φ

∏n−1
k=1

(
p − φ − ∑k

j=1 tj
)
!(tk + 1)p−φ−∑k

j=1 tj

v(1;p − 1, 0, . . . , 0),

(7.7)

where Ej0 is determined by (3.6) and (3.8), Ej+1,j = {Ej+1,0, E0,j }, and v(1;p − 1, 0, . . . , 0)

is the highest weight vector |�)E with respect to the Eij basis of gl(1|n). In general, this
vector is given by (5.9), and here this becomes

v(1;p − 1, 0, . . . , 0) = 1(
γ 2

1 + γ 2
2

)(p−1)/2

p−1∑
u=0

(−1)u e−2π iru/n

√(
p − 1

u

)

× γ
p−1−u

1 γ u
2 w(1; u, p − 1 − u, 0, . . . , 0). (7.8)

Decomposition (4.17) reads

V (p) → W([0, 0]) × V ([p, 0, . . . , 0]) ⊕
p−1⊕
K=0

W([1, p − 1 − K]) × V ([K, 0, . . . , 0]), (7.9)

where the gl(n − 1) representation has dim V ([K, 0, . . . , 0]) = (
n−2+K

n−2

)
. So q̂r has 2p + 1

eigenvalues in all, namely ±xK = ±
√

h̄γ

µn
(p − K), where 0 � K � p − 1, with multiplicities(

n−2+K

n−2

)
, and xp = 0 with multiplicity

(
n−2+p

n−2

)
. The orthonormal eigenvectors for ±xK �= 0

are

ψr,±xK ,t = 1√
2
v(1; t1, . . . , tn−1, p − 1 − K) ± 1√

2
v(0; t1, . . . , tn−1, p − K), (7.10)
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where t1 + · · · + tn−1 = K . For the eigenvalue 0, the eigenvectors read

ψr,0,t = v(0; t1, . . . , tn−1, 0), t1 + · · · + tn−1 = p. (7.11)

In other words

Proposition 6. In the representation V (p) = W([1, p − 1, 0, . . . , 0]), the operator q̂r has

2p + 1 distinct eigenvalues given by ±xK = ±
√

h̄γ

µn
(p − K), where 0 � K � p. The

multiplicity of the eigenvalue ±xK is
(
n−2+K

K

)
. A set of orthonormal eigenvectors is given by

(7.10) and (7.11).

8. Conclusions

In this paper, we managed to determine the eigenvalues of an arbitrary self-adjoint odd element
(1.1) of the Lie superalgebra gl(1|n) in a unitary representation W = W([m]n+1). Furthermore,
we gave a construction of a set of orthonormal eigenvectors of this element in W , using the
GZ-basis vectors. The problem is of importance in the study of physical properties of the
gl(1|n) Wigner quantum system solution for a model consisting of a linear chain of n harmonic
oscillators coupled by springs, with periodic boundary conditions. In such a description, the
position and momentum operators q̂r and p̂r of the rth oscillator are such odd elements, see
(2.11)–(2.12). We have concentrated on the operator q̂r . Note, by (2.12), that the analysis
of p̂r is very similar: one should replace all constants γj by

√
βj , leading to the analogue of

(2.11):

p̂r = i

√
µh̄β

n
(E0n − En0), (β = β1 + · · · + βn). (8.1)

Then the counterpart of (5.16) is

p̂r

v ± iw√
2

= ∓
√

µh̄β

n

√
a + b

v ± iw√
2

. (8.2)

So, up to an overall factor, the spectrum of p̂r is the same as that of q̂r . The eigenvectors,
however, are different, but can be found by a similar construction.

As an application, we have in mind the description of some geometric aspects of the
gl(1|n) solution of the quantum system described. These aspects depend on the representation
considered. For the simple class of Fock representations W(p), some properties were already
described in [1]. Clearly, the ladder representations V (p) have a much richer structure. It
would be interesting to study such properties for these representations. In particular, we have in
mind: position probability distributions for the stationary states w(θ; s); position probabilities
for the other oscillators when one oscillator is in an eigenstate with fixed eigenvalue; average
position of the other oscillators when one oscillator is in a fixed position, etc. For all these
aspects, one needs the explicit expansion of the orthonormal q̂r eigenvectors in terms of the
basis of stationary states w(θ; s), as determined in this paper in section 7.

We want to point out that the analysis presented here will be useful not only for the
quantum system described here in section 2, but also for the study of related models. For
example, a quantum system consisting of a linear chain of harmonic oscillators coupled by
springs, but with non-periodic boundary conditions (i.e. with fixed end points) also allows a
gl(1|n) Wigner quantum system solution. The techniques developed here should be useful in
the study of such alternative systems.
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Appendix

The explicit action of a set of gl(1|n) generators on the basis vectors (2.17) was given in [6,
equations (2.13)–(2.18)]. For the readability of this paper, we repeat this here. Denote by
|m)±ij the pattern obtained from |m) by the replacement mij → mij ± 1. Then the action is
given by

e00|m) =

m0,n+1 −

n∑
j=1

θj


 |m); (A.1)

ekk|m) =

 k∑

j=1

mjk −
k−1∑
j=1

mj,k−1


 |m), (1 � k � n); (A.2)

ek−1,k|m) =
k−1∑
j=1

(
−
∏k

i=1(lik − lj,k−1)
∏k−2

i=1 (li,k−2 − lj,k−1 − 1)∏k−1
i �=j=1(li,k−1 − lj,k−1)(li,k−1 − lj,k−1 − 1)

)1/2

|m)+j,k−1,

(2 � k � n); (A.3)

ek,k−1|m) =
k−1∑
j=1

(
−
∏k

i=1(lik − lj,k−1 + 1)
∏k−2

i=1 (li,k−2 − lj,k−1)∏k−1
i �=j=1(li,k−1 − lj,k−1)(li,k−1 − lj,k−1 + 1)

)1/2

|m)−j,k−1,

(2 � k � n); (A.4)

e0n|m) =
n∑

i=1

θi(−1)θ1+...+θi−1(li,n+1 + l0,n+1 + 1)1/2

(∏n−1
k=1(lk,n−1 − li,n+1 − 1)∏n

k �=i=1(lk,n+1 − li,n+1)

)1/2

|m)−in;

(A.5)

en0|m)=
n∑

i=1

(1 − θi)(−1)θ1+...+θi−1(li,n+1 + l0,n+1 + 1)1/2

(∏n−1
k=1(lk,n−1 − li,n+1 − 1)∏n

k �=i=1(lk,n+1 − li,n+1)

)1/2

|m)+in.

(A.6)

In all these formulae lij = mij − i.
It is also useful to know the explicit action of all the odd elements e0j and ej0 of gl(1|n).

This was found in [6, equations (2.25)–(2.26)]:

e0j |m) =
n∑

in=1

n−1∑
in−1=1

· · ·
j∑

ij =1

θin(−1)θ1+···+θin−1
(
lin,n+1 + l0,n+1 + 1

)1/2

×
n∏

r=j+1

S(ir , ir−1)

(∏r−1
k �=ir−1=1

(
lk,r−1 − lir ,r

)∏r
k �=ir=1

(
lkr − lir−1,r−1 + 1

)
∏r

k �=ir=1

(
lkr − lir ,r

)∏r−1
k �=ir−1=1

(
lk,r−1 − lir−1,r−1 + 1

)
)1/2

×

 n∏

k �=in=1

(
lkn − lin,n

)(
lk,n+1 − lin,n+1

)

1/2 (∏j−1

k=1

(
lk,j−1 − lij ,j

)
∏j

k �=ij =1

(
lkj − lij ,j

)
)1/2

|m)−in,n;−in−1,n−1;...;−ij ,j

(A.7)
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ej0|m) =
n∑

in=1

n−1∑
in−1=1

· · ·
j∑

ij =1

(
1 − θin

)
(−1)θ1+···+θin−1

(
lin,n+1 + l0,n+1 + 1

)1/2

×
n∏

r=j+1

S(ir , ir−1)

(∏r−1
k �=ir−1=1

(
lk,r−1 − lir ,r − 1

)∏r
k �=ir=1

(
lkr − lir−1,r−1

)
∏r

k �=ir=1

(
lkr − lir ,r

)∏r−1
k �=ir−1=1

(
lk,r−1 − lir−1,r−1 − 1

)
)1/2

×

 n∏

k �=in=1

(lkn − lin,n)

(lk,n+1 − lin,n+1)


1/2 (∏j−1

k=1(lk,j−1 − lij ,j − 1)∏j

k �=ij =1(lkj − lij ,j )

)1/2

× |m)+in,n;+in−1,n−1;...;+ij ,j , (A.8)

where j = 1, . . . , n, each symbol ±ik, k attached as a subscript to |m) indicates a replacement
mik,k → mik,k ± 1, and

S(k, l) =
{

1 f or k � l

−1 f or k > l.
(A.9)
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